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Abstract

We study transport properties such as electrical and frictionless flow conductance

on scale-free and Erdős-Rényi networks. We consider the conductance G between

two arbitrarily chosen nodes where each link has the same unit resistance. Our

theoretical analysis for scale-free networks predicts a broad range of values of G,

with a power-law tail distribution ΦSF(G) ∼ G−gG , where gG = 2λ − 1, where λ is

the decay exponent for the scale-free network degree distribution. We confirm our

predictions by simulations of scale-free networks solving the Kirchhoff equations

for the conductance between a pair of nodes. The power-law tail in ΦSF(G) leads

to large values of G, thereby significantly improving the transport in scale-free

networks, compared to Erdős-Rényi networks where the tail of the conductivity
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distribution decays exponentially. Based on a simple physical “transport backbone”

picture we suggest that the conductances of scale-free and Erdős-Rényi networks can

be approximated by ckAkB/(kA + kB) for any pair of nodes A and B with degrees

kA and kB . Thus, a single quantity c, which depends on the average degree k of the

network, characterizes transport on both scale-free and Erdős-Rényi networks. We

determine that c tends to 1 for increasing k, and it is larger for scale-free networks.

We compare the electrical results with a model for frictionless transport, where

conductance is defined as the number of link-independent paths between A and

B, and find that a similar picture holds. The effects of distance on the value of

conductance are considered for both models, and some differences emerge. Finally,

we use a recent data set for the AS (autonomous system) level of the Internet and

confirm that our results are valid in this real-world example.
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1 Introduction

Transport in many random structures is “anomalous,” i.e., fundamentally dif-

ferent than that in regular space [1–3]. The anomaly is due to the random

substrate on which transport is constrained to take place. Random structures

are found in many places in the real world, from oil reservoirs to the Internet,

making the study of anomalous transport properties a far-reaching field. In

this problem, it is paramount to relate the structural properties of the medium

with the transport properties.

An important and recent example of random substrates is that of complex

networks. Research on this topic has uncovered their importance for real-
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world problems as diverse as the World Wide Web and the Internet to cellular

networks and sexual-partner networks [4].

Two distinct models describe the two limiting cases for the structure of the

complex networks. The first of these is the classic Erdős-Rényi model of ran-

dom networks [5], for which sites are connected with a link with probability p

and disconnected (no link) with probability 1 − p (see Fig. 1(a)). In this case

the degree distribution P (k), the probability of a node to have k connections,

is a Poisson

P (k) ∼

(

k
)k

e−k

k!
, (1)

where k ≡
∑∞

k=1 kP (k) is the average degree of the network. Mathematicians

discovered critical phenomena through this model. For instance, just as in

percolation on lattices, there is a critical value p = pc above which the largest

connected component of the network has a mass that scales with the system

size N , but below pc, there are only small clusters of the order of log N .

Another characteristic of an Erdős-Rényi network is its “small-world” property

which means that the average distance d (or radius) between all pairs of nodes

of the network scales as log N [6]. The other model, recently identified as

characterizing the topological structure of many real world systems, is the

Barabási-Albert scale-free network and its extensions [7–9], characterized by

a scale-free degree distribution (see Fig. 1(b)):

P (k) ∼ k−λ [kmin ≤ k ≤ kmax], (2)

The cutoff value kmin represents the minimum allowed value of k on the net-

work (kmin = 2 unless noted otherwise), and kmax ≡ kminN
1/(λ−1), the typical
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maximum degree of a network with N nodes [10,11]. The scale-free feature

allows a network to have some nodes with a large number of links (“hubs”),

unlike the case for the Erdős-Rényi model of random networks [5,6]. Scale-

free networks with λ > 3 have d ∼ log N , while for 2 < λ < 3 they are

“ultra-small-world” since the radius scales as d ∼ log log N [4,10].

Here we extend our recent study of transport in complex networks [12,13]. We

find that for scale-free networks with λ ≥ 2, transport properties characterized

by conductance display a power-law tail distribution that is related to the

degree distribution P (k). The origin of this power-law tail is due to pairs of

nodes of high degree which have high conductance. Thus, transport in scale-

free networks is better because of the presence of large degree nodes (hubs)

that carry much of the traffic, whereas Erdős-Rényi networks lack hubs and

the transport properties are controlled mainly by the average degree k [6,14].

Also, we present a simple physical picture of transport in scale-free and Erdős-

Rényi networks and test it through simulations. Additionally, we study a form

of frictionless transport, in which transport is measured by the number of

independent paths between source and destination. These later results are

similar to those in [15]. The results of our study are relevant to problems of

difussion in scale-free networks, given that conductivity and diffusivity are

related by the Einstein relation [1–3].

The paper is structured as follows. Section 2 concentrates on the numerical

calculation of the electrical conductance of networks. In Sec. 3 a simple phys-

ical picture gives a theoretical explanation of the results. Section 4 deals with

the number of link-independent paths as a form of transport. In Sec. 5 we

present the conclusions and summarize the results in a coherent picture.
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2 Transport in complex networks

Most of the work done so far regarding complex networks has concentrated on

static topological properties or on models for their growth [4,10,8,16]. Trans-

port features have not been extensively studied with the exception of random

walks on specific complex networks [17–19]. Transport properties are impor-

tant because they contain information about network function [20]. Here we

study the electrical conductance G between two nodes A and B of Erdős-Rényi

and scale-free networks when a potential difference is imposed between them.

We assume that all the links have equal resistances of unit value [21].

To construct an Erdős-Rényi network, we begin with N nodes and connect

each pair with probability p. To generate a scale-free network with N nodes,

we use the Molloy-Reed algorithm [22], which allows for the construction of

random networks with arbitrary degree distribution. We generate ki copies of

each node i, where ki is a random number taken from a distribution of the

form P (ki) ∼ k−λ
i . We then randomly pair these copies of the nodes in order

to construct the network, making sure that two previously-linked nodes are

not connected again, and also excluding links of a node to itself [23].

We calculate the conductance G of the network between two nodes A and

B using the Kirchhoff method [24], where entering and exiting potentials are

fixed to VA = 1 and VB = 0. We solve the set of N − 2 linear equations

N
∑

j=1,j 6=i

Vj − Vi

rij
= 0, ∀i 6= A, B (3)

representing the conservation of current at the nodes. The resistances rij are

1 if nodes i and j are connected, and infinite if i and j are not connected.
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Finally, the total current I ≡ G entering at node A and exiting at node B

is computed by adding the outgoing currents from A to its nearest neighbors

through
∑

j(VA − Vj), where j runs over the neighbors of A.

First, we analyze the probability density function (pdf) Φ(G) which comes

from Φ(G)dG, the probability that two nodes on the network have conductance

between G and G+dG. To this end, we introduce the cumulative distribution

F (G) ≡
∫∞
G Φ(G′)dG′, shown in Fig. 2(a) for the Erdős-Rényi and scale-free

(λ = 2.5 and λ = 3.3, with kmin = 2) cases. We use the notation ΦSF(G) and

FSF(G) for scale-free, and ΦER(G) and FER(G) for Erdős-Rényi. The function

FSF(G) for both λ = 2.5 and 3.3 exhibits a tail region well fit by the power

law

FSF(G) ∼ G−(gG−1), (4)

and the exponent (gG − 1) increases with λ. In contrast, FER(G) decreases

exponentially with G.

Increasing N does not significantly change FSF(G) (Fig. 2(b)) except for an

increase in the upper cutoff Gmax, where Gmax is the typical maximum con-

ductance, corresponding to the value of G at which ΦSF(G) crosses over from

a power law to a faster decay. We observe no change of the exponent gG with

N . The increase of Gmax with N implies that the average conductance G over

all pairs also increases slightly.

We next study the origin of the large values of G in scale-free networks and

obtain an analytical relation between λ and gG. Larger values of G require

the presence of many parallel paths, which we hypothesize arise from the high

degree nodes. Thus, we expect that if either of the degrees kA or kB of the
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entering and exiting nodes is small (e.g. kA > kB), the conductance G between

A and B is small since there are at most k different parallel branches coming

out of a node with degree k. Thus, a small value of k implies a small number of

possible parallel branches, and therefore a small value of G. To observe large

G values, it is therefore necessary that both kA and kB be large.

We test this hypothesis by large scale computer simulations of the conditional

pdf ΦSF(G|kA, kB) for specific values of the entering and exiting node degrees

kA and kB. Consider first kB � kA, and the effect of increasing kB, with kA

fixed. We find that ΦSF(G|kA, kB) is narrowly peaked (Fig. 3(a)) so that it is

well characterized by G∗, the value of G when ΦSF is a maximum. We find

similar results for Erdős-Rényi networks. Further, for increasing kB, we find

[Fig. 3(b)] G∗ increases as G∗ ∼ kα
B, with α = 0.96 ± 0.05 consistent with the

possibility that as N → ∞, α = 1 which we assume henceforth.

For the case of kB & kA, G∗ increases less fast than kB, as can be seen in Fig. 4

where we plot G∗/kB against the scaled degree x ≡ kA/kB. The collapse of

G∗/kB for different values of kA and kB indicates that G∗ scales as

G∗ ∼ kBf

(

kA

kB

)

. (5)

Below we study the possible origin of this function.

3 Transport backbone picture

The behavior of the scaling function f(x) can be interpreted using the fol-

lowing simplified “transport backbone” picture [Fig. 4 inset], for which the
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effective conductance G between nodes A and B satisfies

1

G
=

1

GA

+
1

Gtb

+
1

GB

, (6)

where 1/Gtb is the resistance of the “transport backbone” while 1/GA (and

1/GB) are the resistances of the set of links near node A (and node B) not

belonging to the “transport backbone”. It is plausible that GA is linear in kA,

so we can write GA = ckA. Since node B is equivalent to node A, we expect

GB = ckB. Hence

G =
1

1/ckA + 1/ckB + 1/Gtb

= kB
ckA/kB

1 + kA/kB + ckA/Gtb

, (7)

so the scaling function defined in Eq. (5) is

f(x) =
cx

1 + x + ckA/Gtb
≈

cx

1 + x
. (8)

The second equality follows if there are many parallel paths on the “trans-

port backbone” so that 1/Gtb � 1/ckA [25]. The prediction (8) is plotted in

Fig. 4 for both scale-free and Erdős-Rényi networks and the agreement with

the simulations supports the approximate validity of the transport backbone

picture of conductance in scale-free and Erdős-Rényi networks.

The agreement of (8) with simulations has a striking implication: the conduc-

tance of a scale-free and Erdős-Rényi networks depends on only one quantity

c. Further, since the distribution of Fig. 3(a) is sharply peaked, a single mea-

surement of G for any values of the degrees kA and kB of the entrance and exit

nodes suffices to determine G∗, which then determines c and hence through

Eq. (8) the conductance for all values of kA and kB.
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With regards to quantity c, first note it should grow, up to its upper limit

1, as the number of connections increases. For instance, a complete graph

has conductance N/2 which, if compared to Eq. (7), indicates that indeed

c → 1. This suggests testing c as a function of the average degree k. In Fig. 5

we present results for both scale-free and Erdős-Rényi networks. The most

important feature is that there seems to be a power-law decay of 1 − c with

respect to k. We find that the dependence is of the form 1 − c ∼ k
q
, with

q = −1.37±0.02 for Erdős-Rényi and q = −1.69±0.02 for scale-free. Also, we

observe that c for Erdős-Rényi networks, at least in the region of k studied,

is lower than for scale-free networks. As k increases, transport on scale-free

networks becomes increasingly better than in Erdős-Rényi networks, because

c is closer to one for the same k.

Within this “transport backbone” picture, we can analytically calculate FSF(G).

The key insight necessary for this calculation is that G∗ ∼ kB, when kB ≤

kA, and we assume that G ∼ kB is also valid given the narrow shape of

ΦSF(G|kA, kB). This implies that the probability of observing conductance G

is related to kB through ΦSF(G)dG ∼ M(kB)dkB, where M(kB) is the proba-

bility that, when two nodes A and B are chosen at random, kB is the minimum

degree. This can be calculated analytically through

M(kB) ∼ P (kB)

kmax
∫

kB

P (kA)dkA (9)

Performing the integration we obtain for G < Gmax

ΦSF(G) ∼ G−gG [gG = 2λ − 1]. (10)
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Hence, for FSF(G), we have FSF(G) ∼ G−(2λ−2). To test this prediction, we

perform simulations for scale-free networks and calculate the values of gG − 1

from the slope of a log-log plot of the cumulative distribution FSF(G). From

Fig. 6(b) we find that

gG − 1 = (1.97 ± 0.04)λ − (2.01 ± 0.13). (11)

Thus, the measured slopes are consistent with the theoretical values predicted

by Eq. (10) [26].

The transport backbone conductance Gtb of scale-free networks can also be

studied through its pdf ΨSF (see Fig. 7). To determine Gtb, we consider the

contribution to the conductance of the part of the network with paths between

A and B, excluding the contributions from the vicinities of nodes A and B,

which are determined by the quantity c. The most relevant feature in Fig. 7

is that, for a given λ value, both ΨSF and Φ(G) have equal decay exponents,

suggesting that they are also related to λ as Eq. (11). Figure 7 also shows that

the values of Gtb are significantly larger than G.

4 Number of link-independent paths: transport without friction

In many systems, it is the nature of the transport process that the particles

flowing through the network links experience no friction. For example, this is

the case in an electrical system made of super-conductors [27], or water flow

along pipes, if frictional effects are minor. Other examples are flow of cars

along traffic routes, and perhaps most important, the transport of information

in communication networks. Common to all these processes is that, the quality
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of the transport is determined by the number of link-independent paths leading

from the source to the destination (and the capacity of each path), and not by

the length of each path (as is the case for simple electrical conductance). In this

section, we focus on non-weighted networks, and define the conductance, as

the number of link-independent paths between a given source and destination

A and B. We name this transport process as the max-flow model, and denote

the conductance as GMF. Fast algorithms for solving the max-flow problem,

given a network and a pair (A, B) are well known within the computer science

community [28]. We apply those methods to random scale-free and Erdős-

Rényi networks, and observe similarities and differences from the electrical

conductance transport model. Max-flow analysis has been applied recently

for complex networks in general [15,29], and for the Internet in particular

[30], where it was used as a significant tool in the structural analysis of the

underlying network.

We find that in the max-flow model, just as in the electrical conductance case,

scale-free networks exhibit a power-law decay of the distribution of conduc-

tances with the same exponent (and thus very high conductance values are

possible), while in Erdős-Rényi networks, the conductance decays exponen-

tially (Fig. 8(a)). In order to better understand this behavior, we plot the

scaled-flow G∗
MF/kB as a function of the scaled-degree x ≡ kA/kB (Fig. 8(b)).

It can be seen that the transition at x = 1 is sharp. For all x < 1 (kA < kB),

G∗
MF = x (or G∗

MF = kA), while for x > 1 (kB < kA), G∗
MF = 1 (or G∗

MF = kB).

In other words, the conductance simply equals the minimum of the degrees of

A and B. In the symbols of Eq. (7), this also implies that c → 1; i.e. scale-free

networks are optimal for transport in the max-flow sense. The derivation lead-

ing to Eq. (10) becomes then exact, so that the distribution of conductances
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is given again by ΦMF,SF(GMF) ∼ G
−(2λ−1)
MF .

This picture of the transport is seen when the minimum degree in the network

is kmin = 2. When the minimum degree is allowed to take values in the range

between 1 and 2 [31], we find that GMF ∝ min{kA, kB}, but the two quantities

are no longer equal. This reflects the fact that as the minimum network degree

is lowered, the network becomes more dilute, such that two paths starting at

the source might intersect at some link inside the backbone. In other words,

the conductance of the backbone is still high, but no longer infinite. This is

illustrated in Fig. 9(a), where we plot the average conductance GMF vs. the

minimum degree of the source and sink min{kA, kB}, and find that while the

relation between the two variables is linear, the slope is not necessarily 1.

Nevertheless, as kmin approaches 2, the slope becomes 1, which indicates that

a sufficient condition for the network to have infinite backbone conductivity

is kmin ≥ 2. This is illustrated again in Fig. 9(b), where the distribution of

conductance values GMF for fixed min{kA, kB} is plotted.

We have so far observed that the max-flow model is quite similar to electrical

conductance, by means of having a finite possibility of finding very high values

of conductance. Also, the fact that the minimum degree plays a dominant role

in the number of link-independent paths makes the scaling behavior of the

electrical and frictionless problems similar. Only when the conductances are

studied as a function of distance, some differences between the electrical and

frictionless cases begin to emerge. In Fig, 10(a), we plot the dependence of the

average conductance GMF with respect to the minimum degree min(kA, kB) of

the source and sink, for different values of the shortest distance `AB between A

and B, and find that GMF is independent of `AB as the curves for different `AB
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overlap. This result is a consequence of the frictionless character of the max-

flow problem. However, when we consider the electrical case, this independence

disappears. This is illustrated in Fig, 10(b), where G is also plotted against

the minimum degree min(kA, kB), but in this case, curves with different `AB

no longer overlap. From the plot we find that G decreases as the distance

increases. This is explained using the observation of [32], that the average

shortest distance between the source and the sink is inversely proportional

to the (logarithm of the product) of their degrees. Thus, on average, shorter

distances are attributed to higher degrees, which in turn are connected by

larger conductance.

In order to test the validity of our results in real networks, we measured the

conductance G
(I)
MF on the most up to date map of the Autonomous Systems

(AS) level of the Internet structure [33]. From Fig. 11 we find that the slope

of the plot, which corresponds to gG − 1 from Eq. (10), is approximately 2.3,

implying that λ ≈ 2.15 ± 0.05. This value of λ is in good agreement with the

value of the degree distribution exponent for the Internet observed in [33].

5 Summary

In summary, we find that the conductance of scale-free networks is highly

heterogeneous, and depends strongly on the degree of the two nodes A and

B. Our results suggest that the transport constants are also heterogeneous in

these networks, and depend on the degrees of the starting and ending nodes.

We also find a power-law tail for ΦSF (G) and relate the tail exponent gG to the

exponent λ of the degree distribution P (k). This power law behavior makes

scale-free networks better for transport. Our work is consistent with a simple
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physical picture of how transport takes place in scale-free and Erdős-Rényi

networks. This, so called “transport backbone” picture consists of the nodes

A and B and their vicinities, and the rest of the network, which constitutes

the transport backbone. Because of the great number of parallel paths con-

tained in the transport backbone, transport takes place inside with very small

resistance, and therefore the dominating effect of resistance comes from the

vicinity of the node (A or B) with the smallest degree. This scenario appears

to be valid for both the electrical and frictionless models, as clearly indicated

by the similarity in the results. The quantity c, which characterizes trans-

port for a complex network exhibits a behavior of the form 1 − k
q

for both

scale-free and Erdős-Rényi networks in the electrical model, and in the fric-

tionless model c = 1 in most cases. We observe that as k increases, scale-free

networks become progressively better than Erdős-Rényi networks in electrical

transport.

Finally, we point out that our study can be extended further. For instance,

it has been found recently that many real-world scale-free networks possess

fractal properties [34]. However, random scale-free and Erdős-Rényi networks,

which are the subject of this study, do not display fractality. Since fractal sub-

strates also lead to anomalous transport [1–3], it would be interesting to ex-

plore the effect of fractality on transport and conductance in fractal networks.

This case is expected to have anomalous effects due to both the heterogeneity

of the degree distribution and to the fractality of the network. Furthermore,

the effect on conductivity and transport of the correlation between distance

of two nodes and their degree [32] should be further investigated.
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(a)
(b)

Fig. 1. (a) Schematic of an Erdős-Rényi network of N = 12 and p = 1/6. Note

that in this example ten nodes have k = 2 connections, and two nodes have k = 1

connections. This illustrates the fact that for Erdős-Rényi networks, the range of

values of degree is very narrow, typically close to k. (b) Schematic of a scale-free

network of N = 12, kmin = 2 and λ ≈ 2. We note the presence of a hub with

kmax = 8 which is connected to many of the other links of the network.
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Fig. 2. (a) Comparison for networks with N = 8000 nodes between the cumulative

distribution functions of conductance for the Erdős-Rényi and the scale-free cases

(with λ = 2.5 and 3.3). Each curve represents the cumulative distribution F (G)

vs. G. The simulations have at least 106 realizations. (b) Effect of system size on

FSF(G) vs. G for the case λ = 2.5. The cutoff value of the maximum conductance

Gmax progressively increases as N increases.
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Fig. 3. (a) The pdf ΦSF(G|kA, kB) vs. G for N = 8000, λ = 2.5 and kA = 750

(kA is close to the typical maximum degree kmax = 800 for N = 8000). (b) Most

probable values G∗, estimated from the maxima of the distributions in Fig. 3(a), as

a function of the degree kB . The data support a power law behavior G∗ ∼ kα
B with

α = 0.96 ± 0.05.
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Fig. 4. Scaled most probable conductance G∗/kB vs. scaled degree x ≡ kA/kB

for system size N = 8000 and λ = 2.5, for several values of kA and kB : 2

(kA = 8, 8 ≤ kB ≤ 750), ♦ (kA = 16, 16 ≤ kB ≤ 750), 4 (kA = 750,

4 ≤ kB ≤ 128), © (kB = 4, 4 ≤ kA ≤ 750), 5 (kB = 256, 256 ≤ kA ≤ 750),

and . (kB = 500, 4 ≤ kA ≤ 128). The curve crossing the symbols is the predicted

function G∗/kB = f(x) = cx/(1 + x) obtained from Eq. (8). We also show G∗/kB

vs. scaled degree x ≡ kA/kB for Erdős-Rényi networks with k = 2.92, 4 ≤ kA ≤ 11

and kB = 4 (symbol •). The curve crossing the symbols represents the theoretical

result according to Eq. (8), and an extension of this line to represent the limiting

value of G∗/kB (dotted-dashed line). The probability of observing kA > 11 is ex-

tremely small in Erdős-Rényi networks, and thus we are unable to obtain significant

statistics. The scaling function f(x), as seen here, exhibits a crossover from a lin-

ear behavior to the constant c (c = 0.87 ± 0.02 for scale-free networks, horizontal

dashed line, and c = 0.55 ± 0.01 for Erdős-Rényi, dotted line). The inset shows

a schematic of the “transport backbone” picture, where the circles labeled A and

B denote nodes A and B and their associated links which do not belong to the

“transport backbone”.
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The scale-free networks display a power-law decay with exponent −1.69 ± 0.02,

whereas the Erdős-Rényi networks exhibit a decay exponent of −1.37 ± 0.02.
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Fig. 6. (a) Simulation results for the cumulative distribution FSF(G) for λ be-

tween 2.5 and 3.5, consistent with the power law FSF ∼ G−(gG−1) (cf. Eq. (10)),

showing the progressive change of the slope gG − 1. (b) The exponent gG − 1

from simulations (circles) with 2.5 < λ < 4.5; shown also is a least square fit

gG − 1 = (1.97 ± 0.04)λ − (2.01 ± 0.13), consistent with the predicted expression

gG − 1 = 2λ − 2 [cf. Eq. (10)].
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Fig. 8. (a) Cumulative distribution of link-independent paths (conductance)

FMF(GMF) vs. GMF compared with the electrical conductance distributions taken

from Fig. 2. We see that the scaling is indeed the same for both models, but the

proportionality constant of FMF(GMF) vs. GMF is larger for the frictionless problem.

(b) Scaled most probable number of independent paths G∗
MF/kB as a function of

the scaled degree kA/kB for scale-free networks of N = 8000, λ = 2.5 and kmin = 2.

The behavior is sharp, and shows how G∗
MF is a function of only the minimum k.
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Fig. 9. (a) Average conductance GMF vs. minimum degree of the source and sink A

and B for different values of kmin, the minimum degree in the network. All curves

show the behavior GMF ∝ k, as the proportionality coefficient gradually increases

(see inset), until eventually becomes 1 as kmin approaches 2. (b) The same concept

is illustrated by plotting the probability to find a specific conductance GMF

when the minimum degree is 12, for few values of kmin.

24



10
0

10
1

10
2

10
3

Minimum degree min(k
A
,k

B
)

10
0

10
1

10
2

10
3

A
v
e
r
a
g
e
 C

o
n

d
u

c
ta

n
c
e
 G

M
F

l=1

l=2

l=3

l=4

l=5

l=6

(a)

10
1

Mimimum degree min(k
A
,k

B
)

10
1

A
v
e
r
a
g
e
 C

o
n

d
u

c
ta

n
c
e
 G

l=1

l=3

(b)

Fig. 10. (a) Average conductance GMF vs. minimum degree min(kA, kB) of the

source and sink A and B for different values of the shortest distance `AB. The

relation is independent of `AB indicating the independence of GMF on the distance.

The network has N = 8000, λ = 2.5, kmin = 2. (b) Average conductance G vs.

minimum degree min(kA, kB) of the source and sink A and B for different values

of distance `AB . The independence of G with respect to `AB breaks down and, as

`AB increases, G decreases. Once again, N = 8000 and λ = 2.5, but the average has

been performed for various kB < kA and kA = 750.
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